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Abstract: In this paper, we propose a bit depth compression (BDC) technique, which performs bit
packing by dynamically determining the pack size based on the pattern of the bit depth level of the
sensor data, thereby maximally reducing the space wastage that may occur during the bit packing
process. The proposed technique can dynamically perform bit packing according to the data’s charac-
teristics, which may have many outliers or several multidimensional variations, and therefore has
a high compression ratio. Furthermore, the proposed method is a lossless compression technique,
which is especially useful as training data in the field of artificial intelligence or in the predictive
analysis of data science. The proposed method effectively addresses the spatial inefficiency caused by
unpredictable outliers during time-series data compression. Additionally, it offers high compression
efficiency, allowing for storage space savings and optimizing network bandwidth utilization while
transmitting large volumes of data. In the experiment, the BDC method demonstrated an improve-
ment in the compression ratio of up to 247%, with 30% on average, compared with other compression
algorithms. In terms of energy consumption, the proposed BDC also improves data transmission
using Bluetooth up to 34%, with 18% on average, compared with other compression algorithms.

Keywords: sensor data; lossless compression; time series data; bit packing; bit depth level

1. Introduction

Sensors are used in various fields, such as in autonomous vehicles, wearable devices,
smart farms, and smart factories, for collecting sensing data in real time [1-4]. These sensors
collect time-series data that are correlated with each other. Then, the data collected from
the various sensors are transmitted to edge devices or cloud data centers, as shown in
Figure 1. With the introduction of digital twins and smart factories, more than 20 billion of
IoT sensors were in use in environments such as factories, buildings, and cities in 2020 [5].
According to a recent study, the number of connected IoT devices is expected to reach
30 billion in 2030 [6].

Connecting to the virtual environment will require the use of multiple sensors in the
real world, and the amount of data collected by these sensors will cause considerable com-
munication load when transmitting to a data server, such as cloud data centers. According
to Intel Corporation, for example, cameras and light detection and ranging (LiDAR) sensors
currently installed in autonomous vehicles generate 4 TB of data every 90 min. To transmit
and manage the enormous amount of time-series data generated by these sensors, many
studies on time-series data compression have recently been conducted [7-35].

Generally, sensors collect data including various types of noise, which is caused by
their inherent inaccuracies or environmental factors. To address this situation, lossy com-
pression techniques are frequently utilized to control noise and maximize the compression
ratio within an allowable range of data similarity. In general, lossy compression algorithms
have a higher compression ratio than lossless ones. Although lossy compression algorithms
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also have a significant advantage in data transmission owing to their high compression
ratios, they can lead to a loss of important information, such as the subtle differences used
to distinguish data classes. To address this issue, several studies on lossless techniques have
been conducted [18-20,22]. However, the existing lossless algorithms do not accurately
reflect data characteristics when the data have have many outliers or several multidimen-
sional variations (i.e., data robustness); hence, their compression efficiency is not high
enough and not suitable for compressing big data.
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Cloud data center

Figure 1. Network topology from IoT sensor device to cloud data center.

To resolve this problem and increase compression efficiency, this study proposes a
bit depth compression (BDC) technique. The BDC algorithm performs bit packing by
dynamically determining the size of the bit pack based on the pattern of the bit depth level
of the sensor data, thereby reducing the amount of space that may be wasted during its bit
packing. Furthermore, the proposed technique is a lossless compression that can be used to
compress time-series data that have many outliers or several multidimensional variations.
Therefore, the proposed technique can more efficiently perform dynamic bit packing based
on the data robustness, resulting in a high compression ratio. Our contributions are
summarized as follows:

¢ We propose a time-series data compression technique based on bit packing by dynam-
ically determining the size of the bit pack based on the pattern of the bit depth level of
the sensor data.

¢ Our proposal effectively addresses the spatial inefficiency caused by unpredictable out-
liers during time-series data compression, and BDC offers high compression efficiency,
allowing for storage space savings and optimizing network bandwidth utilization
while transmitting large volumes of data.

The remainder of this paper is organized as follows: Section 2 presents the background
knowledge and related literature. Section 3 describes the BDC technique that performs
lossless compression through dynamic bit packing according to the bit depth level. Section 4
evaluates the performance of the BDC technique against existing compression techniques.
Finally, Section 5 concludes the paper.

2. Background and Related Literature

Data compression has two types: lossy compression, which results in information
loss during encoding; and lossless compression, which does not result in information
loss [8]. Lossy compression techniques have been extensively studied because of the benefits
associated with their high compression ratio [9-14]. The compression of these algorithms
is based on generated patterns or mathematical models such as temporal sampling or
regularity based on specific data features. Generally, lossy compression techniques are
suitable for applications where the loss of data is acceptable.

Lossless compression methods are more suitable for applications that require the
fine control of sensor data [15-22]. Lossless compression techniques include well-known
coding schemes, such as Huffman coding or run-length encoding; however, these coding
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schemes are inefficient for time-series data compression [16,17]. Instead, in the field of IoT
sensor data, the forecasting algorithm is widely used for the compression of time-series
data, which is characterized as a data sequence with time intervals [17]. The time-series
forecasting algorithm predicts the next value by creating a mathematical model from the
given time-series data. These algorithms include techniques such as delta coding, delta
of deltas coding, or auto-regressive (AR) coding [19-21]. Delta coding or delta of deltas
coding stores the differences between consecutive numbers instead of raw values from
an array of numbers with the initial values. In general, these delta coding schemes show
a high compression ratio for time-series data with small variations, but the compression
efficiency is seriously degraded for data with several multidimensional variations.

Recent works have focused on utilizing some models such as AR and recurrent neural
network (RNN) to improve the forecasting accuracy of time-series data with forecasting
algorithms. These models can help achieve a relatively high compression ratio compared
with delta coding schemes due to the high prediction accuracy of time-series data, but they
are difficult to utilize for terminal end devices that are sensitive to energy consumption
due to their increased computational complexity [22].

Among the lossless compression techniques used for time-series data, the GORILLA
algorithm was designed for the time-series database of Facebook [19]. This GORILLA
algorithm reduces the number of bits of timestamp values included in time-series data as
delta of deltas and reduces the data bits by using XOR encoding. This technique exhibits
high compression efficiency for time-series data where the values change slowly and are
consistently similar but has a disadvantage in that compression efficiency drops sharply
for time-series data that change rapidly or have no patterns.

Idrees et al. proposed the lossless electroencephalography (EEG) data compression
(LEDaC) technique based on the Internet of medical things (IoMT) for fog computing
networks [24]. This technique combines DBSCAN clustering with Huffman encoding. DB-
SCAN is used to group EEG data and apply Huffman encoding to each group, compressing
the time-series data. This technique has the advantage of achieving high compression rates
without loss of EEG data, but it may be challenging to apply it to other types of time-series
data with non-regular patterns.

The Sprintz algorithm was proposed by Davis Blalock et al. as a method for compress-
ing integer time series data [22]. The Sprintz algorithm includes a forecasting algorithm
that predicts time-series data, a bit packing process that reduces bits for an array of the
error between predicted values and actual values, a run-length encoding that reduces
repeated values in which runs of 0, and Huffman coding that is applied as entropy coding.
This technology reduces data volume through forecasting encoding and then improves
the compression ratio by sequentially applying existing lossless compression algorithms.
However, since the Sprintz algorithm statically samples sensor data at a fixed size, the
compression ratio varies greatly depending on data type and pattern.

3. Data Compression Technique Based on Dynamic Bit Packing Using Bit Depth

In this section, we propose a bit depth compression (BDC) algorithm that dynamically
performs bit packing for time-series data compression. We first show the structure of the
BDC and then explain how the BDC works with example scenarios.

3.1. Structure of BDC

The proposed BDC is a bit packing algorithm that dynamically performs compression
according to the bit depth of a value extracted from a forecasting algorithm such as delta or
RNN. Figure 2 shows the overall structure of the proposed BDC method.



Sensors 2023, 23, 8575 40f17
QMBD : Queue to Monitor the Bit Depth
N(Data) : The number of sensor data
N(SubPack;) : The number of sub-bit depth of i’th data in the header
BitDepth;; : The bit depth of j’th sub-bit pack in i’th data
Len(SubP;;) : The payload length of j’th sub-bit pack in i’th data
QMBD Bit Pack Module
[d [ [ d ] d]
BDE [ Header Payload
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Figure 2. Structure of the proposed BDC algorithm.

As shown in Figure 2, the data collected from sensors are stored in a data buffer and
compressed before being transmitted through a transmitter. First, the forecasting module
(EM), which performs compression by predicting the future values of time-series data, can
utilize various forecasting techniques, such as delta, delta of deltas, and RNN encoding.
Because the values predicted through the FM have various levels of bit depth, a lot of space
in the payload may be filled with zeros. The proposed technique varies the payload size
to reduce space wastage. To this end, our technique utilizes the bit depth level of the data
collected through a bit depth estimator (BDE) when performing bit packing. The BDE
includes a queue to monitor the bit depth (QMBD) that traces the bit depth level of the
error value generated by FM, and this monitoring result is used by the bit packing module
in the next stage. The bit pack module performs bit packing by splitting it into several
sub-packs according to the bit depth information. The bit-packed values are then stored
in a transmit buffer and transmitted by a transmitter according to the transmission policy.
The proposed technique employs the dynamic partitioning of sensor data based on the bit
depth of the values during compression, instead of statically packing them into a fixed size.
Therefore, this BDE offers the advantage of a high compression ratio.

3.2. Procedure of the BDC

We explain the procedure and algorithm of BDC with example scenarios. To explain
the operations and contributions of the BDC algorithm, we first show the operation of the
previous algorithm.

Figure 3 shows the values extracted after delta-based forecasting of time-series data
in the Sprintz algorithm for discussion to improve the previous technique. In order to
demonstrate the potential inefficiencies in the existing algorithms for time-series data
compression, Figure 3 illustrates the compression process for three distinct sensor data
streams. Figure 3 presents multiple streams for illustrative purposes, showing our proposed
compression has no correlation of multiple data streams and focuses on single data streams.
Figure 3 depicts the following steps: (1) Time-series data collected from each sensor are
compressed via delta encoding, which predicts the next value of the time-series data and
calculates the difference from the actual value. In contrast to XOR encoding, where the
initial value significantly influences compression performance, delta forecasting encoding
only considers the difference between consecutive sensor data, making the initial value
relatively less important. We use the initial value detected in the first stage, and the value is
transmitted separately to the server to ensure the accurate reconstruction of subsequent data
points. (2) This difference in value may be a negative number. To handle this, the zigzag
algorithm converts the sign bit from the most significant bit (MSB) to the least significant
bit (LSB). In the zigzag algorithm, the encoding for a given input value 7, with fixed k-bit
integers, is defined as (n > (k—1)) A (n < 1). Similarly, the decoding process can be



Sensors 2023, 23, 8575

50f17

expressed as (n > 1) A —(n&1), where A represents XOR, & represents AND, < denotes a
bitwise left shift, and >> denotes a bitwise right shift. (3) The Sprintz performs bit packing of
the data into blocks of samples through splitting to respond to rapid entropy changes or to
apply different encodings for each sensor type. (4) Since the header stores the maximum bit
depth of the values of the payload, Sensors 1, 2, and 3 store 7(0111;), 2(0010;), and 5(01015),
respectively, and then split-encoded values are stored for each sensor type in the payload.

Sensor, Sensor, Sensor;

Raw data ’ 32 ‘ 33 ‘ 31 ‘ 32 ‘ 74 ‘ 22 ‘ ’416‘415‘413‘414‘413‘415‘ ’113‘122‘ 112‘127‘ 119‘120‘

T — o T[] 1]

sensor
(4) Bit packing

sensor,

sensor;

header

payload

0111

0000010

0000011

0000010

1010100

0010

01

11

10

01

0101

10010

10011

11110

01111

Figure 3. Example of compression using delta encoding. A bit depth level for each sensor datum is
stored in the header, and a zigzag-encoded value is stored in the payload.

When we consider Sensor 1 in Figure 3, existing bit packing technology must generate
many padded zeros in the numbers stored together because 1010100, has a high bit depth
level, as seen in the red box of the payload in Sensor 1. When there are many rapidly
changing values in the time-series data, such as the values for the Sensor 1 types, the com-
pression efficiency drops sharply. The proposed BDC method aims to reduce the values
padded with zeros by dynamically generating multiple sub-packs according to a bit depth.
The operating process of the BDC is described in three ways according to the bit depth
level of the value enqueuing the QMBD. Figures 4 and 5 show the main operations of the
proposed BDC technique in each case.

Figure 4 shows the operation of BDC in two different cases. Case 1 is an operation
when a value that is the same level as the maximum bit depth of QMBD is enqueued. Case
2 is an operation when a value having a level larger than the maximum bit depth of QMBD
is enqueued. In Figure 4, the horizontal axis indicates the data sequence, and the vertical
axis indicates the bit depth level. As in Case 1 in Figure 4, when the bit depth of the value
input to QMBD is the same as the maximum bit depth level of QMBD, the value is put
into QMBD without any additional operation. On the other hand, as shown in Case 2 in
Figure 4, when a value larger than the maximum bit depth of the QMBD is enqueued,
the space of the bit pack must be increased by the bit depth level of the currently enqueued
value, resulting in space wastage.
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previously enqueued BD . newly enqueued BD

Bit Depth

Case 1

Data Sequence

Case 1. When a value with the
same bit depth level enters the

QMBD, the BDC enqueues the
value in the QMBD and waits Case 2 wasted space sub-pack

for the next value. -

Case 2. When a value larger
than the maximum bit depth
level of the QMBD is
enqueued, the BDC divides the
values in the QMBD into sub-
pack according to Equation 1.

Figure 4. Operations when the same level as the maximum bit depth of QMBD is enqueued (Case 1)
and when a value with a bit depth level larger than the maximum bit depth of QMBD is enqueued
(Case 2). The red line represents the maximum bit depth of the data stored in the queue.

previously enqueued BD . newly enqueued BD D estimated sampled pack

Bit depth

Case 3 Case 3(a)

Data Sequence t Split Position (SP)

Case 3. When a bit depth value

smaller than the maximum bit

depth level of the QMBD is added

to the queue, the BDC sets its split Case 3(c) Case 3(b)

position.

Case 3(a). When a value withthe [ [T~ Y T
same bit depth level is enqueued

into the QMBD, the SP position is

not changed.

Case 3(b). When a value equal to
or larger than the maximum bit
depth level of the QMBD is t Reset SP

enqueued into the queue before
packing, the SP is reset. \J‘

Case 3(c). When a value with a bit Case 3(c)-next

depth smaller than the minimum bit
depth level in QMBD is enqueued,

the BDC decides whether the split wasted space
position should be moved.

A ABD,
Case 3(c)-next. 4 is the space
benefit obtained when the split B J» ABD,
position is not changed and B is the

benefit of space obtained when the
split position is changed.

LI

Figure 5. Operations when a bit depth value smaller than the maximum bit depth of the QMBD
is enqueued. The red line represents the maximum bit depth of the data stored in the queue.
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Equation (1) is used to calculate the wasted space size. In Equation (1), BD;,, denotes
the bit depth level of the currently enqueued new value, maxBD(QMBD) represents the
maximum bit depth level in QMBD, and len(QMBD) denotes the length of the QMBD.
If the wasted space is larger than the header of the sub-pack, the pack is divided; otherwise,
no action is taken.

wasted space size = (BDjyery — maxBD(QMBD)) x len(QMBD) (1)

Next, when a bit depth value smaller than the maximum bit depth of the QMBD is
inserted into the queue, the BDC sets its split position (SP), as shown in Case 3 in Figure 5.
The SP refers to the position that is divided into a sub-pack because the bit depth is too
small to be continuously inserted, resulting in wasted bit space. After the SP is set, it can
be divided into 3 scenarios again according to the next input bit depth level. First, when
a value with the same bit depth level is inserted again into the QMBD, the SP position is
unchanged, as shown in Case 3(a) in Figure 5. Second, when a value equal to or larger than
the maximum bit depth level of the QMBD is inserted into the queue before packing, the SP
is reset, as shown in Case 3(b) in Figure 5. Third, as shown in Case 3(c) in Figure 5, when a
value with a bit depth smaller than the minimum bit depth level in the QMBD is enqueued,
the BDC decides whether the split position should be moved. As shown in Case 3(c)-next
in Figure 5, A is the space benefit obtained when the split position is unchanged, and B
is the benefit of space obtained when the split position is changed. Therefore, the BDC
changes the split position when B is larger than or equal to A; otherwise, it is not changed.
The relationship between A and B can be expressed as Equation (2).

if A < B, then SP is changed
else SP is unchanged, where
A = ABD; x (len(QMBDY, ;) + )
B=ABD, x S
ABD;y = maxBD(QMBD) — maxBD(QMBDy), )
ABD, = maxBD(QMBD?, ;) — BD,,

@)

In Equation (2), (sp + 1) indicates the position next to the split position, and 1 repre-
sents the length of the total entry of the QMDB. len(QMB Ds”p 1) denotes the length of the

QMBD from the position next to the split position to the nth position, maxBD(QMB Dgp 1)
denotes the maximum bit depth level between the (sp+1)th and nth positions, and S denotes
the estimated size of the sampled packs. The BDC calculates S using the simple moving

average (SMA) or exponential moving average (EMA), as shown in Equation (3).
1 k
- - Z S;
k—m+1 i=m (3)

EMA; = a X S + (1 — 0() X EMAk_4

SMA, =

In Equation (3), S; is the size of the ith sampled pack, m is the number of sampled
packs at the start point, and k is the number of sampled packs at the end point. Therefore,
k —m + 1 represents the size of the queue used to monitor the size of the sampled pack.
In Equation (3), EMA controls the weighting of S; through parameter a, where we set
« to 2/ (period 4+ 1). The proposed BDC enables real-time compression of sequentially
transmitted sensor data by estimating the bit depth size using techniques like SMA or EMA,
instead of storing and compressing all the data. This capability makes BDC suitable for
compressing sensor data in real-time transmission scenarios.

When the split position is set, the BDC uses Equation (4) to check whether bit pack
space is being wasted.
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if wasted space size > size(sub — header), then per form bit packing
else go to next step, where wasted space size = 4)
(len(QMBD) — len(QMBDY")) x (maxBD(QMBD) — maxBD(QMBDY), ,))

where len(QMBD}") denotes the length of the QMBD from the first position to the spth
position, and maxBD(QMBDgp 4+1) denotes the maximum bit depth level between the
(sp+1)th and nth positions. If the size of the wasted pack space is larger than the size of
the sub-header, the BDC divides the QMB Dip from QMBD, then dequeues the values of
QMBD} and performs bit packing.

Figure 6 shows the proposed bit packing frame of the BDC algorithm, and Table 1
shows the description of terms used in Figure 6. The bit packing frame is composed of
a header that stores the number of sensor data and the number of sub-bit packs against
each datum, and a payload that stores sub-bit packs. Sub-bit packs are composed of
sub-headers with the following information: a bit depth level, a sub-payload length,
and sub-payloads that store values. In Figure 6, if the total payload length is provided
in the header, it is not necessary to include length information for the last sub-payload.
However, packet consistency and regularity, we present a uniform packet format, and it is
feasible to eliminate the information on the length of the last sub-payload for each sensor,
as an implementation perspective.

Header Payload

N(SubBitPack,) P \ ‘ PO | ‘
Sub-header Sub-payload

N(SubBitPack,)

BitDepth,, |Len(SubP,,)
BitDepth,, |Len(SubP,,)

N(Data)

| Po | Pi | P2 | P3 | P4 | Ps |

N(SubBitPack;) BitDepth,; | Len(SubP,)

Figure 6. Header and payload structure of bit pack in BDC algorithm.

Table 1. Description of terms in Figure 6.

Symbol Description

N(Data) The number of sensor data

N(SubBitPack;) The number of sub-bit packs of ith data in header
BitDepthij The bit depth of jth sub bit pack in ith data
Len(SubP;)) The payload length of jth sub bit pack in ith data

Figure 7 shows the result of the proposed BDC technique for Figure 3. The proposed
method divides and stores bit packs into several sub-bit packs of different sizes in Sensor 1
and Sensor 3 datasets in Figure 7, because the BDC technique performs compression using
dynamic bit packing based on adaptable bit depth level. That is, the data of Sensor 1
is divided into 3 sub-bit packs and each sub-bit pack has 2(0010;), 7(0111,) and 2(0010;)
bit depth. In this way, the BDC makes it possible to consume less space compared with
representing all data with a 7-bit depth, as shown in Figure 3.
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Header Payload
Sub-header Sub-payload
0010 [ oo1t | ot | 1m | 10
i Sub-header Sub-payload
o111 | 0010 | 1010100 | 1010101
Sub-header Sub-payload
010 [ oo1t | o1 | 10 | m
0011
Sub-header Sub-payload
0001 oot | 1000 | oo1 | o | o0 | oot | 100 | om | 101 | 100
Sub-header Sub-payload
0101 | 0100 | 10010 | 10011 | 11110 | o111l
0010
Sub-header Sub-payload
0010 [ 0100 | o1 | 10 | 1 | oo

Figure 7. Example of performing the proposed BDC in Figure 3.

Finally, Figure 8 shows the overall procedure of the BDC algorithm, including Case 1
to Case 3. As shown in Figure 8, BDC determines the split positions of bit packing based on
the space benefit and performs bit packing by dynamically changing its operation according
to the bit depth level of the value encoded through the forecasting module.

FA : forecasting array

QMBD : queue to monitor the bit depth
N : the maximum size of the queue
Yes
BitPacking() End

No
value < next value in FA When SPis 0,
bd « bit depth of value SP = len(QMBD) Enqueue(QMBD, bd)

1

Equation 2

SP=0
Enqueue(QMBD, bd)

SplitPack(QMBD) SplitPack(QMBD)

SplitPack(QMBD)

Figure 8. The procedure for the operation of the BDC algorithm.

4. Performance Evaluation

In this section, we evaluate the compression efficiency of the proposed BDC method
on well-known time-series datasets. We first introduce the datasets used in this study, then
show the compression results, and finally discuss the efficiency of our proposals in terms
of compression ratio and energy consumption.
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4.1. Datasets

We used the UCI repository as the main dataset for our performance evaluation.
The UCI repository contains various types of data, such as multivariate, univariate, sequen-
tial, text, including time-series data, for artificial intelligence and data science. We used the
following UCI time-series datasets, and these datasets consist of integers and real numbers.
We quantized them to 16-bit integers based on the minimum and maximum values.

Appliances energy prediction dataset: This dataset includes data from the Zigbee
wireless sensors used to monitor temperature and humidity at home. The stored data are
10 min averages of sensor data collected over a period of 4.5 months [36].

Air quality dataset: This dataset contains air quality data collected on Italian roads
from March 2004 to February 2005. The dataset includes CO, non-metallic hydro-carbons,
benzene, total nitrogen oxides (NOx), and nitrogen dioxide (NO;) levels with missing
values set to —200 [37].

Gas sensor array temperature modulation dataset: This dataset contains measurements
from chemical sensors exposed to gas mixtures. It includes CO concentration, temperature,
humidity, flow rate, and data from 14 MOx gas sensors inside a gas chamber. The results
obtained on 30 September 2016 were used in this study [38].

SML2010 dataset: This dataset is a collection of time-series data collected from a
smart home. The dataset includes data on indoor and outdoor temperature, humidity,
illumination, and other variables, collected over approximately 28 days [39].

4.2. Experimental Results and Discussion

We compared the compression ratio and energy consumption of the BDC method with
those of representative bit packing algorithms such as Sprintz with XOR or delta encoding
applied as forecasting, and TSXor [40]. The raw data were stored by performing bit packing
based on the largest bit depth among the error values obtained from the FM. The length of
the QMBD was set to 16, and this size was enough to monitor time-series data with several
multidimensional variations in our study.

Figure 9 shows the compression ratio of each algorithm based on four datasets.
The compression ratio is defined as the ratio between the size of the original data (Origi-
nal Size) and the size of the compressed data (Compressed Size). It can be expressed as
Compression ratio = Original Size/Compressed Size. In the graph, the x-axis represents the
type of sensor data, and the y-axis represents the compression ratio. In Figure 9, the XOR
and delta algorithms are the encoding techniques that were chosen to be applied as predic-
tion algorithms, which are represented in combination with bit packing algorithms Sprintz
and BDC, respectively. As shown in Figure 9, the BDC method shows a high compression
ratio for most datasets. Among the forecasting algorithms, delta encoding exhibits a higher
compression ratio than XOR encoding. The combined delta forecasting and BDC algorithm
has a compression ratio up to 24.7 times higher than that of the raw data on the datasets
used in the experiment. Compared with Sprintz’s bit packing, the BDC algorithm improves
the compression ratio by up to 73%, and 14% on average, when using XOR forecasting
and improves compression ratio by up to 72%, and 15% on average, when using delta
forecasting. Furthermore, compared with the TSXor compression algorithm, the proposed
BDC algorithm shows a maximum performance improvement of 247% and an average
improvement of 64%. The proposed BDC algorithm has a relatively high compression ratio,
resulting in a reduced space requirement for the buffer before data transmission as well
as a decrease in the payload of transmitted packets. In the experiments conducted, the re-
duction rate of the payload was, on average, 28% for XOR forecasting and 32% for delta
forecasting. In comparison with TSXor, the proposed method demonstrated a maximum
payload reduction of 98% and an average reduction of 46%.
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Figure 9. Compression ratio of each algorithm according to the dataset: (a) Gas sensor array tem-
perature modulation dataset, (b) Appliances energy prediction dataset, (c) Air Quality dataset, and
(d) SML2010 dataset.

The performance enhancement of our proposed method shown in Figure 9 mainly
originates from dynamic bit packing by adaptively changing the packing size, and Figure 10
shows the actual compression process and its analysis. Figure 10 shows the results of the
size comparison of bit packing according to the operation of (a) raw data (delta) and the bit
pack performed by the (b) Sprintz (delta) algorithms and the proposed (c) BDC (delta)
algorithm. In Figure 10, the left and right figures are NMHC (GT) in the Air quality dataset
and lights in the Appliance energy prediction dataset, respectively. In each graph, the x-axis
represents the sequence of time series data, and the y-axis represents the encoded values
after applying the delta encoding and zigzag algorithm. The black line in the graph is
the data value extracted via delta encoding, and the red line is the size of the bit packing.
Because the bit packing size of the raw data is acheived by performing compression on
the entire dataset, a large amount of space is wasted due to some data with high bit depth.
Compared with raw data, Sprintz and BDC achieve higher compression efficiency because
they perform bit packing based on sampled data rather than the entire dataset. Compared
with the Sprintz algorithm, however, which makes use of a fixed-size sampling procedure,
the BDC algorithm is able to dynamically control the sampling size, thereby increasing the
bit packing efficiency for data with high variance. Through dynamic bit packing, the BDC
separates outlier values using sub-bit packing and includes values with similar bit depth in
the same sampling to reduce wasted space.
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Figure 10. A size comparison of bit packing according to the operation of compression algorithms:
(a) raw data, (b) Sprintz, (c) BDC. In each graph (a—c), the left is Air auality dataset and the right is
Appliances energy prediction dataset, respectively.

A comparison of the energy consumption of our proposed method with that of other
algorithms is as follows: For comparing the energy consumption, we used a TI SensorTag
C2650 [41], and the detailed specifications of this terminal device are shown in Table 2.
The energy consumption of the sensor device is composed of the energy needed for the
computation of the compression process, the energy used for writing the compressed data
to memory, and the energy required for transmission through Bluetooth. The following
shows the energy consumption for each part.

Table 2. Energy consumption parameters of TI SensorTag C2650.

Test Conditions Typical Unit
Core Frequency Up to 48 MHz
Operation Voltage 1.8t03.8 C
Input Voltage (Vpps) 3.0 A%
Standby Current 1 HA
Shutdown Current 100 nA
Active-Mode RX 59 mA
Active-Mode TX at 0 dBm 6.1 mA
Active-Mode TX at +5 dBm 9.1 mA
Active-Mode MCU 61 nA/MHz

Active-Mode Sensor Controller 8.2 nA/MHz
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First, the computational energy of the compression process is the sum of the energy
components proportional to the number of clocks in the microcontroller for data processing,
including the standby power and typical active power. When activated with an average
clock of 24 MHz (average) and the basic power of 61 nA (shown in Table 2), the average load
current expected is 24 MHz x (6.1 x 107°) nA/MHz = 1.46 mA. Therefore, assuming that
the operating voltage (indicated by Vppg) of a typical MCU is 3.0 V, the energy consumption
of the MCU is expected to be (1.46 x 1073) A x 3V =4.38 x 1073 W.

Second, the energy used for writing to memory is as follows: The C2650 device
consisted of 128 KB of flash memory area to store code and data and 4 KB + 2 x 6 KB of
SRAM space. The proposed system used the entire 128 KB flash memory space for data
storage. Table 3 shows the energy consumption characteristics according to operations in
the C2650 device. Because the total memory capacity of the terminal device was 128 KB
and the page size was 4 KB, 32 page slots were allocated. For each 4-byte write, 8.15 mA of
energy was consumed for a period of 8 pis. Therefore, 3.0 V x (8.15 x 1073 A x (8 x 1079)
s x 10%) = 187.5 x 107® W (Vpps = 3.0 V) of energy was consumed for writing to one page
(4 KB) of memory, and thus 6 x 107> W of energy was consumed for writing to the entire
space (128 K). Since an erasure in NAND flash is applied to the entire memory, 3 V X
(12.6 x 1073) A x (8 x 1073) x 32 ms =9.679 x 10~3 W of energy was required. Therefore,
in the C2650 device, 6 x 1073 W (which is writing entire memory) + 9.679 x 10~2 W (which
is erasing entire memory before writing) = 15.679 x 10~3 W of energy was consumed per
128 KB of data size, respectively.

Table 3. Flash memory characteristics of TI SensorTag C2650.

Parameter Test Conditions Typical Unit
Input voltage, respectively (Vpps) - 3.0 A%
In-system programmable flash size - 128 KB
Flash page/sector size - 4 KB
Flash page/sector erase current Average delta current 12.6 mA
Flash write current Average delta Cgrrent, 4 bytes at 8.15 mA
a time
Flash page/sector erase time - 8 ms
Flash write time 4 bytes at a time 8 ps

Finally, the energy required for transmission was as follows: The maximum Blue-
tooth data payload per packet was 251 bytes. Table 4 lists the Bluetooth power con-
sumption parameters based on an input voltage of Vpps 3 V, output power of 0 ddBM,
advertising interval of 1000 ms, connection interval of 1000 ms, and payload data size
of 251 bytes. Based on Table 4, the average current draw during a connection event [ is
4325.247 ps x mA /850.095 ps = 5088.6 pA. The average current for the entire connection
interval can be calculated by Equation (5) [42].

Table 4. The parameters of energy consumption for Bluetooth low-energy controller, IEEE 802.15.4 in
SensorTag C2650.

State Time [ps] Current [mA] Time x Current
Wake Up and Pre-processing 1283.89 3.10 3981.68
Preparation for Receive 394.22 3.58 1409.55
Receive (RX) 461.33 6.69 3085.90

RX to TX transition 109.22 5.21 568.97
Transmit (TX) 1998.47 7.34 14,669.14
Post-Processing 853.44 2.62 2239.63
Average Value of Connection 850.095 4.7567 4325.247

Total Value of Connection 5100.57 28.54 25954.9
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According to Equation (5), the average current draw during connection is calculated
as (100 ms — 5.101 ms) x 1 pA + (5.101 ms x 5088.6 1A)/100 ms = 260.5 pA. Thus,
the energy consumed per packet is 3 V x 2.605 x 10~* A = 7.815 x 10~* W. Since each
packet can transmit tahe maximum of 251 bytes of data, it would take 510 transmission
operations to transmit all 128 KB of data. Therefore, the total energy consumption would be
3.986 x 10~! W, obtained by multiplying the energy consumed per packet by the number
of packets required (510). The aforementioned calculation assumes that the device is
connected as a peripheral for data transmission, and it does not take into account any
fluctuations in power consumption resulting from the use of other sensors. Therefore,
the actual energy consumption can vary depending on other external factors such as
transmission powetr, transmission duration, and Bluetooth module efficiency.

Based on this analysis, the total energy consumption can be determined using Equation (6),
for operation duration ¢ (second) and data size d (byte).

Total energy consumption = compression energy
+ write energy
+ transmission energy
= (t x (438 x107%))W
+ (d/128 KB x (15.679 x 107%))W
+ (d/128 KB x (3.986 x 10~ 1))W

(6)

Figure 11 shows the energy consumption for the raw data and each compression
method by applying Equation (6). In Figure 11, the x-axis represents the types of sensor
data, and the y-axis shows energy consumption. In Figure 11, the graph illustrates dif-
ferent aspects of energy consumption using different colors. When compared with other
compression techniques, the BDC algorithm demonstrates slightly higher computational
complexity due to the calculations involved in BDE. However, the BDC algorithm achieves
a higher compression ratio, resulting in reduced numbers of compressed packets and trans-
mission time, consequently leading to lower write and transmission energies. As shown in
Figure 11, the Sprintz algorithm increases energy consumption via the compression of MCU
for some data. TSXor also consumes relatively more energy compared with the proposed
method due to its lower compression ratio, making it less efficient for data transmission.
The BDC algorithm also increases the energy consumption owing to the MCU calculation,
but the higher data compression rate reduces the energy consumption of data transmis-
sion. In sensor devices, the energy consumption of data transmission often outweighs
that of computation due to the higher power requirements of wireless communication
modules, which have to operate over varying distances or potentially through different
environmental conditions. Therefore, minimizing the amount of data to be transmitted
becomes a critical factor in reducing overall energy consumption, and the BDC effectively
reflects these advantages. As demonstrated in Figure 11, the BDC resulted in an energy
consumption reduction of up to 94% and 38%, with an average reduction of 69% and 12%
compared with that of the raw data and Sprintz, respectively. Furthermore, compared with
TSXor, the proposed method reduced energy consumption by up to 67%, with an average
of 24%.
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Figure 11. Energy consumption of the proposed BDC and other algorithms: (a) Gas sensor array
temperature modulation dataset, (b) Appliances energy prediction dataset, (c) Air quality dataset,
and (d) SML2010 dataset.

5. Conclusions

With technologies such as smart factories, smart farms, autonomous vehicles, and dig-
ital twins becoming increasingly pervasive across various industries, the amount of data
generated by sensors has also increased. These data can be transmitted to edge computers
and cloud servers for data analysis or model generation in the field of artificial intelligence
or data science.

In this study, we developed a BDC technique to compress the time-series data gen-
erated by sensors. The BDC algorithm performs bit packing by dynamically determining
the pack size based on the pattern of the bit depth level of sensor data, thereby maximally
reducing the space wastage that may occur during the bit packing process. The BDC
technique compresses time-series data transmitted from an end device to an edge device
or from an edge device to a cloud data center. Because the BDC is a lossless compression
technique, there is no loss of information in the collected sensor data, which is especially
useful as training data in the field of artificial intelligence or predictive analysis of data
science. The lossless feature of the BDC can more accurately reflect outliers or variations,
that is, the data robustness. In the experiment, the BDC demonstrated an improvement
in the compression ratio of up to 247% and 30% on average, and a reduction in power
consumption of up to 34%, with an average of 18%, compared with the other algorithms.
This implies that the proposed BDC has high utility value for compressing sensor data
transmitted from a wireless terminal device to an edge computer or a cloud data center.

As future research, we plan to study an enhanced forecasting model to further improve
the compression ratio of time-series data. In addition, we are planning a study on the
reduction in computation overhead in edge nodes for lossless compression.
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